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Abstract

For biomolecular NMR structures typically only a poor correspondence is observed between statistics
derived from the experimental input data and structural quality indicators obtained from the structure
ensembles. Here, we investigate the relationship between the amount of available NMR data and structure
quality. By generating datasets with a predetermined information content and evaluating the quality of the
resulting structure ensembles we show that there is, in contrast to previous findings, a linear relation
between the information contained in experimental data and structural quality. From this relation, a new
quality parameter is derived that provides direct insight, on a per-residue basis, into the extent to which
structural quality is governed by the experimental input data.

Introduction

Within the field of biomolecular structure deter-
mination by NMR spectroscopy, the relation
between the amount and quality of the experi-
mental input data and the precision and accuracy
of the resulting protein structures has been exten-
sively investigated (Oshiro et al., 1991; Liu et al.,
1992; Clore et al., 1993; Zhao and Jardetzky,
1994). In addition to the nuclear Overhauser effect
(NOE) derived distance restraints, the primary
source of structural information, other types of
experimental data have been evaluated and
implemented in NMR structure calculations. Sev-
eral studies have shown the beneficiary effects of

J-couplings (Garrett et al., 1994; Kim and Preste-
gard, 1990; Mierke et al., 1994), chemical shifts
(Kuszewski et al., 1995a, 1995b), residual dipolar
couplings (Clore et al., 1999; Tjandra et al., 2000,
1997b), T1/T2-ratios (Tjandra et al., 1997a) and
paramagnetic shifts (Banci et al., 1997, 2004) on
both the precision and accuracy of biomolecular
structures determined by NMR.

Recently, an interest has arisen in not only the
precision and accuracy, but also the quality of
protein structures determined by NMR spectros-
copy (Doreleijers et al., 1998; Linge and Nilges,
1999; Spronk et al., 2002; Linge et al., 2003; Snyder
et al., 2005). The quality of biomolecular structure
models is commonly evaluated by indicators
describing the packing of core residues and the
normality of backbone and side-chain conforma-
tions (as reviewed in Spronk et al., 2004). Such

*To whom correspondence should be addressed. E-mail:
g.vuister@science.ru.nl

Journal of Biomolecular NMR (2005) 33: 123–134 � Springer 2005
DOI 10.1007/s10858-005-2826-5



quality indicators are often expressed as a Z-score
(Hooft et al., 1997; Spronk et al., 2004), defined as
the deviation from the average value for this indi-
cator observed in a database of high resolution
crystal structures, expressed in units of the stan-
dard deviation of this database derived average.

From X-ray crystallography, it is known that
good experimental data are a prerequisite, but not
a guarantee, for a high-quality structure and that
refinement techniques play a crucial role
(Kleywegt and Jones, 1995). This notion also holds
true for the NMR structure determination process
(Linge et al., 2003; Spronk et al., 2002). A recent
re-refinement of 100 NMR derived protein struc-
tures in explicit solvent demonstrates a significant
improvement in all structural quality scores com-
bined with an equally good or better fit to the
experimental data (Nabuurs et al., 2004). Similar
results were obtained when a large set of NMR
structures was recalculated from scratch using
several well-established protocols (Nederveen
et al., 2005). These recalculated structures initially
showed marginal improvements over the original
ones, and only after a final refinement step using
molecular dynamics in explicit water did the
structures exhibit a similar improvement in quality
as observed previously (Nabuurs et al., 2004).

For crystal structures it has been observed that
quality indicators, such as those for the Rama-
chandran plot, tend to improve as the accuracy of
the structural model, as judged by resolution and
Rfree factor, improves (Kleywegt and Jones, 1996,
2002). Studies on NMR structures, however, have
only shown a poor correlation between structural
quality indicators and indicators representing the
available experimental NMR data (Doreleijers et
al., 1998; Nederveen et al., 2005). Figure 1 shows
that classical descriptors of the amount of avail-
able NMR data, such as the number of restraints
per residue (hereafter referred to as data density)
and the NOE completeness (Doreleijers et al.,
1999), are only weakly correlated with structural
quality indicators (Doreleijers et al., 1999; Ne-
derveen et al., 2005). The structural uncertainty
(see Equation 1), calculated from the experimental
input data by the QUEEN method (Nabuurs et al.,
2003), shows a reasonable correlation with the
backbone root mean square deviation (RMSD) of
the final structure ensembles, but nevertheless also
correlates weakly with overall structural quality
indicators. At first glance, these findings seem to

point in the direction that the quality of NOE
derived NMR structures is foremost determined
by the final refinement step and not, as one would
expect, by the amount of available experimental
data.

Here, we investigate the relation between the
amount of experimental NMR data and the
structural quality of the resulting structure
ensembles. Using the QUEEN method to deter-
mine the data information content, we find, in
contrast to previous studies using classical meth-
ods, a clear relation between the amount of data
and structural quality. This relation is revealed by
monitoring structural quality as more experimen-
tal information is gradually introduced into the
structure calculation process. For this purpose,
information measures determined by QUEEN are
used to construct subsets of experimental data
with a predetermined information content. We
show that the information content of these subsets
is directly correlated to the accuracy of the
resulting structure ensembles, as assessed by cross-
validation. Subsequently, the validation results
obtained from these structures are used to dem-
onstrate for the first time that the structural
quality of NMR structures does indeed directly
relate to the amount of experimentally obtained
information, albeit that this relation can only be
assessed on a per-residue basis. Finally, we then

Figure 1. Analysis of experimental data and recalculated struc-
tures in the RECOORDdatabase (Nederveen et al., 2005). Three
data derived quality scores and seven other common structural
quality indicators were correlated. The absolute Pearson’s
correlation coefficients (r) for data density, NOE completeness
and QUEEN structural uncertainty (Hstructure) are displayed on
the vertical axis in white, grey and black bars, respectively, as
function of the ten parameters along the horizontal axis.
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use these results to define, apply and discuss a new
information based per-residue quality parameter.

Material and methods

Datasets

We use the experimental datasets of the B1
immunoglobulin binding domain of protein G
(GB1) (Kuszewski et al., 1999), the protein
ubiquitin (UBI) (Cornilescu et al., 1998), the
alternatively spliced form of the second PDZ
domain of PTP-BL (PDZ) (Walma et al., 2004),
the cold-shock domain of the Y-box protein YB-1
(YB1) (Kloks et al., 2002) and the presequence
peptide of the protein 5-aminolevulinate synthase
(PSA) (Goodfellow et al., 2001) as obtained from
the BioMagResBank (BMRB) (Doreleijers et al.,
2003). For simplicity, only unambiguously as-
signed NOE distance restraints are taken into ac-
count in this study, ambiguous and other types of
restraints were removed from all datasets. The
UBI, GB1 and PDZ datasets present examples of
well-determined, folded proteins. In contrast, the
YB1 dataset is less well determined, mostly due to
the high flexibility of this protein in solution. The
PSA dataset describes a partially unfolded protein,
with only �25% of its residues involved in regular
secondary structure elements, and is used to
demonstrate that the presented method can also be
applied to these types of systems.

For each experimental dataset subsets of restraints
were generated, containing a pre-determined fraction
of the total available structural information, using
the QUEEN program (Nabuurs et al., 2003).
Restraints were randomly selected from the com-
plete dataset and sequentially added to the new,
initially empty, dataset until the desired fraction of
the total information was obtained. Datasets with
less than 25 restraints, or whose information con-
tent deviated more than 1% from the target infor-
mation content, were rejected. All subsets were
generated in five-fold to assess the variance for each
individual target value.

Structural uncertainty

The structural uncertainty resulting from the dif-
ferent datasets was calculated using the QUEEN
program (Nabuurs et al., 2003). This method is

based on a representation of the structure in
distance space and concepts derived from infor-
mation theory. As most experimental NMR data
is readily represented in distance space, it is pos-
sible to construct a distance matrix representing all
available distance information. The structural
uncertainty of an individual residue is defined in
QUEEN as

Hres ¼
1

NrðNs � 1Þ
XNr

r¼1

XNs

s6¼r
logðd upper

rs � d lower
rs Þ

(Eq. 1)

with Nr the number of atoms in the residue, Ns the
number of atoms in the structure, drs

upper the upper
bound for the distance between atoms r and s and
drs

lower the lower bound for that same distance.
The structural uncertainty of the complete struc-
ture (Hstructure) can be calculated by extending the
first sum over all atoms in the structure (Nr=Ns)
(Nabuurs et al., 2003).

With this definition for structural uncertainty,
the information contained in a set of experimental
restraints (Iset) is defined as the difference in
structural uncertainty of the structure before
(Hstructure| 0) and after (Hstructure| set) addition of
the experimental dataset:

Iset ¼ Hstructurej0 �Hstructurejset (Eq. 2)

The relative information content of a subset of
restraints is defined as Isubset/Iset and expressed as a
percentage:

Irel ¼
Isubset
Iset
� 100%: (Eq. 3)

Structure calculations

Structure calculations were performed in torsion
angle space using the default simulated annealing
algorithm implemented in the program CNS
(Brünger et al., 1998). For each dataset 20 accepted
structures were calculated with an NOE violation
threshold of 0.5 Å. Subsequently, all structures
were refined in explicit solvent, which was previ-
ously shown to significantly improve structural
quality (Linge et al., 2003; Nabuurs et al., 2004).
Structures were validated using the WHAT IF
program (Vriend, 1990) and visualized using YA-
SARA (http://www.yasara.org). The computation
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time for the determination of the proposed
U-factor (see below) requires the calculation and
refinement of structure ensembles containing
typically 20 structures for 4 � 5 datasets, which for
a medium-sized protein can take up to a day on a
single processor PC. However, the algorithm is
highly parallelizable and can be efficiently run a
dual processor machine or Linux cluster.

Results and discussion

Evaluating quality on a per residue basis

It has been shown that overall quality descriptors
derived from experimental NOE data correlate
poorly with structural quality indicators derived
from the resulting ensembles (Doreleijers et al.,
1999; Nederveen et al., 2005) (cf. Figure 1). As
structural variability is known to be non-uniform
for different regions of a molecule, we first evalu-
ated all quality scores, information measures and
structural indicators on a per residue basis, using
the experimental data and structure ensembles of
the RECOORD database (Nederveen et al., 2005).
For each of the 500 experimental NMR datasets,
we calculated the per-residue structural uncer-
tainty (Equation 1) from the input data and cor-
related these scores with several per-residue quality
indicators as determined by WHAT CHECK
(Hooft et al., 1996). The Pearson’s correlation
coefficient between the average per-residue quality
scores for the 20 members of each RECOORD
ensemble and the per-residue structural uncer-
tainty (Equation 1) is shown in Figure 2 for each
of the 500 structural ensembles.

Although different correlation coefficients are
obtained for the individual RECOORD entries as
function of the different WHAT CHECK quality
scores, the plots clearly show the overall trends.
For example, Figure 2a shows that the per-residue
structural uncertainty (Hres) typically correlates
reasonably well (�r ¼ 0:6) with the per-residue
accessibility. This illustrates that the conformation
of more exposed residues often cannot be deter-
mined very well by NMR spectroscopy, resulting
in a higher structural uncertainty for these resi-
dues. In a similar fashion, residues with lower
uncertainty values tend to have higher packing
quality scores (�r ¼ �0:6, cf. Figure 2b). In general,
however, only a weak correlation can be observed

between structural uncertainty and other quality
indicators of a local nature, e.g., the Ramachan-
dran plot Z-score (�r ¼ �0:2, cf. Figure 2e) (Hooft
et al., 1997) or the backbone normality score
(�r ¼ �0:3, cf. Figure 2d).

These findings also seem to support the
counter-intuitive observation that there is no
strong relation between the final per-residue
structural uncertainty (Hres), and the quality of
the corresponding residues in the resulting struc-
ture ensembles. From practice and automated
structure determination approaches (Güntert,
2003) it is known, however, that structural
quality does quite clearly improve as more

Figure 2. Per-residue Pearson’s correlation coefficients (r) of
the predicted structural uncertainty versus different ensemble
averaged structural properties and quality indicators as deter-
mined by WHAT CHECK (Hooft et al., 1996). Shown are the
correlation coefficients of structural uncertainty versus (a)
accessibility (�r ¼ 0:6), (b) packing quality (�r ¼ �0:6), (c) side-
chain rotamer normality (�r ¼ 0:1), (d) backbone normality
(�r ¼ �0:3), (e) Ramachandran plot quality (�r ¼ �0:2) and (f)
the number of bumps (�r ¼ 0:0) for each of the 500 entries from
the RECOORD database (Nederveen et al., 2005). The average
value of the correlation coefficient over the 500 entries is
indicated with a solid line for each indicator.
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experimental information is added to the system
and structural uncertainty decreases, which seems
to contradict the findings as displayed in Fig-
ure 2. Therefore, we decided to monitor how
structural quality evolves as more structural
information is gradually introduced into a cal-
culation, by calculating structure ensembles from
subsets of the experimental data with a pre-
determined amount of experimental information.

Creating subsets of experimental data

We constructed multiple subsets of experimental
data with an information content varying between
60 and 95%. The lower limit of 60% was chosen as
datasets with lower information content typically
did not yield native like structures (data not
shown). Figure 3 shows for different subsets the
number of included restraints as function of the
information content using two different selection
methods. For GB1, the five subsets with an iden-
tical information content constructed for each
target value, consist of varying numbers of
experimental restraints (see Figure 3a). These
findings are in-line with our previous results that
showed greatly varying information content for
individual restraints (Nabuurs et al., 2003). The
effect is even more pronounced for the smaller and
less well-defined PSA dataset (cf. Figure 3b).
Conversely, constructing subsets based on the
number of included restraints, results in large
variations in their information content (see Fig-
ures 3c and 3d). These findings again illustrate that
the number of restraints is a poor indicator for the
amount of available experimental information and
hence subsets constructed on the basis of infor-
mation content were used.

Validating subset quality

To assess how different structural properties de-
pend on the amount of information contained in
the different subsets, an ensemble of 20 structures
was calculated for each subset. The structural
variance, as judged by the heavy atom RMSD of
the resulting structure ensembles, is shown in
Figures 4a–b and e–f for the GB1 and PSA data-
sets, respectively. For comparison, results are
shown as function of the number of included re-
straints (Figure 4a and e) and as function of the
relative information content (Figure 4b and f).

Figure 4 shows for both the GB1 and the PSA
datasets a clear relation between the relative
experimental information content (cf. Equation 3)
and the RMSD of the resulting structure ensem-
bles (see Figure 4b and 4f), in line with similar
results obtained previously (Nabuurs et al., 2003).
For the PSA dataset this relation becomes less
clear if structural variability is analyzed as func-
tion of the number of restraints (cf. Figure 4e).

The structural variance of the resulting
ensembles however, does not provide a clear and
unbiased measure for the quality of the applied
dataset (Spronk et al., 2003). To assess the
quality of the resulting structures more rigor-
ously, we determined the agreement of each
structure ensemble with the restraints not
included in the subset, a procedure commonly
referred to as cross-validation. This is analogous
to the complete cross-validation procedure
described by Brünger et al. (1993). In this tech-
nique, however, the available NMR data is
partitioned into multiple test sets with an equal
number of restraints and cross-validation is
performed with each of the test sets. Statistical
quantities, e.g., the number and size of NOE
violations, are then averaged over the different
test sets. Thus, the differences in information
content between the test sets is expected to
average out, resulting in more meaningful cross-
validated measures of fit for NMR datasets. In
our present method however, all sets are con-
structed based on their information content in-
stead of the number of restraints, rendering the
use of many test sets in principle unnecessary.

The relation between the information content
of the different subsets and the cross-validated
RMS violations (cvRMS) of the NOEs not in-
cluded in these subsets is shown in Figures 4c–d
and g–h. Figure 4c and g show that the relation
between subset size and the cvRMS of the NOE
is similar to that observed for the structural
variance. The information content, however,
shows a near perfect linear relation with the
cross-validated RMS of the NOE for the GB1
dataset (see Figure 4d; r=)0.99). For the PSA
dataset, despite its largely unfolded nature, we
also observe a strong correlation between infor-
mation content and cvRMS, albeit with more
scatter in the data points than for the GB1
dataset (Figure 4h; r=)0.95). These findings
clearly demonstrate that the relative information
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content within an experimental dataset is directly
and linearly related to the accuracy of the
resulting structure ensemble as judged by the
cross-validated RMS of the NOEs.

Assessing the relation between data and structural
quality

After establishing that the overall accuracy of the
different structure ensembles correlates linearly
with the information content of the data from
which they were calculated, we subsequently
evaluated the relation between information con-
tent and structural quality on a per-residue basis.

The structural uncertainty of each individual res-
idue was determined and converted to a relative
per-residue information content score using
Equations 1 and 2. Structural quality was assessed
by the average per-residue Ramachandran plot
quality Z-score for all twenty members of each
ensemble. The Ramachandran plot quality was
chosen over other quality indicators as it is a well-
known, simple and sensitive parameter for assess-
ing the quality of a protein model (Kleywegt and
Jones, 1996; Hooft et al., 1997). Additionally, the
per-residue Ramachandran quality score is, as it is
directly related to the / and w backbone torsion
angles, readily translated into structural terms.

Figure 3. Information content of generated subsets versus the number of restraints included in these datasets. Subsets were
constructed based on information content for both the GB1 (a) and PSA (b) datasets and based on the number of restraints for both
the GB1 (c) and PSA (d) datasets. The scores for all individual sets are shown in grey; the average scores for each target value are
indicated in black.
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Figure 5 shows the relation between the per-
residue relative information content and the
resulting Ramachandran plot quality score for
four different regions of the GB1 domain. From
the different panels in Figure 5 it is evident that
there is a clear correlation between the amount of
experimental input data and the quality score
when evaluated on a per-residue basis. The nature
of this relation however, varies widely between
residues and between different regions of the GB1
protein. The quality of the residues involved in
regular secondary structure elements (as shown in
Figures 5b and 5d) tends to improve as more
information is introduced into the structure cal-
culations, as expressed in the high average corre-
lation coefficient of a linear fit to the data
(�r ¼ 0:90). Other residues, for example Asn 37 (cf.
Figure 5c) or Asn 8 (cf. Figure 5a), do not exhibit
any improvement or even decrease as more data is
added. This very different behavior of individual
residues in response to an increase in structural
information provides a likely explanation to why
we observed only very poor overall correlations
between structural uncertainty and local quality
indicators, such as the Ramachandran plot

appearance (cf. Figure 2). More importantly,
correlation plots like those presented in Figure 5
provide a means to establish the relationship be-
tween the structural quality of individual residues
and the experimental input data. For example, for
a Ramachandran plot outlier it can readily be as-
sessed if it is consistently supported by the exper-
imental data, and thus a genuinely interesting
feature of the structure, or if it is likely a result of
the low information content of the data.

Defining a new quality parameter

To make the information contained in Figure 5
more easily accessible we define a per-residue
quality indicator that describes the correlation of
the quality of that particular residue with the
amount of experimental information known for
that residue. For all per-residue correlation plots
both the correlation coefficient of the information
content with the Ramachandran plot appearance
and the slope of the best linear fit to the average
data points was determined. As the value of the
correlation coefficient (r) expresses the degree to

Figure 4. Relationship between dataset properties and structural properties of the resulting structure ensembles. The all heavy atom
RMSD versus the number of restraints for GB1 (a) and PSA (e). The all heavy atom RMSD versus the relative information content
(Irel) for GB1 (b) and PSA (f). The cvRMS of the NOE versus the number of restraints for GB1 (c) and PSA (g). The cvRMS versus the
relative information content (Irel) for GB1 (d) and PSA (h). The scores for all individual sets are shown in grey; the average scores for
each target value are indicated in black.
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Figure 5. Relative per-residue information (Irel) content versus Ramachandran plot quality Z-score, shown for four different regions
of the GB1 domain: (a) residues 7–9, (b) residues 28–30, (c) residues 36–38 and (d) residues 53–55. Scores for the individual subsets are
shown in grey, averages and standard deviations of the five subsets for each target value are shown in black. The best fit after linear
regression of the four average target value scores is indicated in all panels.
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which structural quality relates to the amount of
information, and the slope (s) provides insight into
the nature of this relation, we propose to combine
these two measures into one quality indicator U:

Ui ¼ C � jrij � si; (Eq. 4)

with Ui equal to the U-score for residue i, C an
arbitrary scaling factor (C=100) and ri and si, the
aforementioned correlation coefficient and slope
for residue i, respectively. To limit computational
requirements, only four subsets containing 70%,
80%, 90% and 100% of the total information
content are used in the determination of the
U-factor. Test results show that the inclusion of
additional subsets does not lead to significant
changes in the obtained values of the U-factor
(data not shown).

Figure 6 shows Ui values as derived for five
different experimental datasets. Figure 6a shows
that the highest Ui values for the GB1 dataset are
observed for the N and C-terminal b-strands.
These two strands, located in the core of the GB1
domain, run in an anti-parallel fashion and NOEs
linking the residues involved were previously
found to be among the on average most important
restraints in the GB1 dataset (Nabuurs et al.,
2003). Of the residues in this dataset only Asn 8
exhibits a very negative U score. Although the
correlation with the information content is not
very high (see Figure 5a), its relatively low
Ramachandran plot Z-score is confirmed by the
X-ray structure of the GB1 domain (Gallagher
et al., 1994).

As shown in Figure 6b, there is a striking dif-
ference in the UBI dataset between the U-scores
for the N-terminal part of the a-helix (residues 23–
29) and the C-terminal region (residues 30–36).
Close examination of both NMR (Cornilescu
et al., 1998) and X-ray (Vijay-Kumar et al., 1987)
derived ubiquitin models reveals that Lys33 and
Glu34 are likely to be responsible for this. The
side-chains of both residues contact residues in an
adjacent b-strand, with Lys33 hydrogen bonding
to Thr14 and Glu34 forming a salt-bridge with
Lys11. Formation of these favorable interactions
requires both residues to be in a less favored region
of the Ramachandran plot. As electrostatic inter-
actions and side-chain hydrogen bond formation
are usually not very well defined by the available
experimental NMR data, but typically result from

refinement in explicit solvent, this likely explains
the weaker dependence on the amount of experi-
mental data observed for this region.

In the graph for the PSA dataset (see Fig-
ure 6d), the folded part of the peptide is readily
recognized by the single large region with positive
U-scores. The sections with near-zero Ui values
coincide with the unfolded regions of the PSA
protein. In a similar fashion, the large flexible
loops in the PDZ (Figure 6c, residues 34–46
(Walma et al., 2004)) and YB1 (Figure 6e, residues
42–54 (Kloks et al., 2002)) proteins can be recog-
nized by subsequent residues with near-zero
U-values. Additionally, the YB1 dataset has lower
U-scores compared to the other datasets describ-
ing folded domains (GB1, UBI and PDZ). This
reflects the relatively small amount of structural
information available to determine the fold of this
protein (Kloks et al., 2002; Nabuurs et al., 2003),
and thus clearly demonstrates that the structural
quality of this domain is to lesser extent deter-
mined by the experimental input data.

A legitimate question to ask at this point is
what additional information the proposed U-fac-
tor conveys with respect to underlying Rama-
chandran plot quality score. To answer this
question, the average per-residue Ramachandran
plot quality scores of a structure ensemble calcu-
lated using the complete dataset are also shown in
Figure 6. Comparison of the two quality indica-
tors reveals that the U-factor does indeed convey
additional information, not available from the
Ramachandran plot quality score alone. As
enclosed in its definition, the U-factor is closely
related to the Ramachandran plot quality score.
This is especially evident for the well-determined
GB1, UBI and PDZ datasets (cf. Figure 6a–c).
This relation is less clear for the less well-defined
PSA and YBOX datasets (cf. Figure 6d–e), indi-
cating that the quality of these structures is indeed
less governed by the experimental data. This is
most evident in the flexible regions of these pro-
teins were near-zero U-factors clearly indicate that
the sometimes observed high Ramachandran
quality scores are actually more determined by the
applied force field rather than by the experimental
input data. However, also in the set of well-defined
structures several residues can be identified, both
in loops as in secondary structure elements, where
the U-factor indicates that structural quality is to a
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lesser extent determined by the experimental data
as to what might be expected from the Rama-
chandran plot quality score alone (e.g., residues
32–36 and 42–46 in the GB1 dataset).

In summary, the different vertical Ui scales in
Figure 6 reflect the varying information content
and quality of these experimental structures. Large
Ui values correspond to a significant response to

experimental data resulting from both a positive
slope and a high correlation with the information
content. Likewise, near zero values indicate that for
these residues there is no apparent relation between
structural quality and the amount of available
experimental data. Residues with negativeUi values
are certainly interesting, as these indicate a negative
response to the available structural data, which

Figure 6. Per-residue U-scores (black filled circles and left y-axis) and Ramachandran quality Z-score (grey filled circles and right
y-axis) for the (a) GB1, (b) UBI, (c) PDZ, (d) PSA and (e) YB1 dataset. Secondary structure is indicated by open (b-sheet) and filled
(a-helix) boxes at the top of each panel.
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could either indicate the presence of structurally
wrong information (e.g., misassigned NOEs) or
structurally correct, but unusual, conformations.

Conclusions

Our results show that global quality parameters
provide only limited insight into the quality of
NMR structures. Therefore, validation of biomo-
lecular NMR structures should ideally be per-
formed on a per-residue basis, in agreement with
the notion that most experimentally accessible
NMR parameters are of a local nature. By con-
structing datasets with a pre-determined amount of
experimental information, and deriving per-residue
structural quality scores from the corresponding
structure ensembles, we showed that there is a clear
relation between these two parameters. However,
the response of individual residues to an increase in
structural information varies widely, both within a
single dataset and between different datasets. Based
on these results, we have defined a new informa-
tion-based per-residue quality parameter: the
U-factor. This indicator provides clear insight into
the extent to which the structural quality of indi-
vidual residues is governed by the experimental
input data and provides a useful tool to evaluate
and validate possible outliers identified by struc-
ture validation software. The software developed
for calculating the describedU-factors will be made
available within the QUEEN software package,
which can be downloaded at http://www.cmbi.
ru.nl/software/queen/.

Acknowledgements

Financial support from the European community
(5th Framework program NMRQUAL Contract
Number QLG2-CT-2000-01313) to S.N., A.N. and
E.K. and from BioRange to C.S. is gratefully
acknowledged.

References

Banci, L., Bertini, I., Cavallaro, G., Giachetti, A., Luchinat, C.
and Parigi, G. (2004) J. Biomol. NMR, 28, 249–261.

Banci, L., Bertini, I., Savellini, G.G., Romagnoli, A., Turano,
P., Cremonini, M.A., Luchinat, C. and Gray, H.B. (1997)
Proteins, 29, 68–76.
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Brünger, A.T., Clore, G.M., Gronenborn, A.M., Saffrich, R.
and Nilges, M. (1993) Science, 261, 328–331.

Clore, G.M., Robien, M.A. and Gronenborn, A.M. (1993)
J. Mol. Biol., 231, 82–102.

Clore, G.M., Starich, M.R., Bewley, C.A., Cai, M.L. and
Kuszewski, J. (1999) J. Am. Chem. Soc., 121, 6513–6514.

Cornilescu, G., Marquardt, J.L., Ottiger, M. and Bax, A. (1998)
J. Am. Chem. Soc., 120, 6836–6837.

Doreleijers, J.F., Mading, S., Maziuk, D., Sojourner, K., Yin,
L., Zhu, J., Markley, J.L. and Ulrich, E.L. (2003) J. Biomol.
NMR, 26, 139–146.

Doreleijers, J.F., Raves, M.L., Rullmann, T. and Kaptein, R.
(1999) J. Biomol. NMR, 14, 123–132.

Doreleijers, J.F., Rullmann, J.A. and Kaptein, R. (1998)
J. Mol. Biol., 281, 149–164.

Gallagher, T., Alexander, P., Bryan, P. and Gilliland, G.L.
(1994) Biochemistry, 33, 4721–4729.

Garrett, D.S., Kuszewski, J., Hancock, T.J., Lodi, P.J., Vuister,
G.W., Gronenborn, A.M. and Clore, G.M. (1994) J. Magn.
Reson. B, 104, 99–103.

Goodfellow, B.J., Dias, J.S., Ferreira, G.C., Henklein, P.,
Wray, V. and Macedo, A.L. (2001) FEBS Lett., 505, 325–
331.

Güntert, P. (2003) Prog. NMR Spec., 43, 105–125.
Hooft, R.W., Sander, C. and Vriend, G. (1997) Comp. Appl.

Biosci., 13, 425–330.
Hooft, R.W., Vriend, G., Sander, C. and Abola, E.E. (1996)

Nature, 381, 272 .
Kim, Y. and Prestegard, J.H. (1990) Proteins, 8, 377–385.
Kleywegt, G.J. and Jones, T.A. (1995) Structure, 3, 535–540.
Kleywegt, G.J. and Jones, T.A. (1996) Structure, 4, 1395–1400.
Kleywegt, G.J. and Jones, T.A. (2002) Structure, 10, 465–472.
Kloks, C.P., Spronk, C.A., Lasonder, E., Hoffmann, A.,

Vuister, G.W., Grzesiek, S. and Hilbers, C.W. (2002) J. Mol.
Biol., 316, 317–326.

Kuszewski, J., Gronenborn, A.M. and Clore, G.M. (1995a)
J. Magn. Reson. B, 107, 293–297.

Kuszewski, J., Gronenborn, A.M. and Clore, G.M. (1999)
J. Am. Chem. Soc., 121, 2337–2338.

Kuszewski, J., Qin, J., Gronenborn, A.M. and Clore, G.M.
(1995b) J. Magn. Reson. B, 106, 92–96.

Linge, J.P. and Nilges, M. (1999) J. Biomol. NMR, 13, 51–59.
Linge, J.P., Williams, M.A., Spronk, C.A., Bonvin, A.M. and

Nilges, M. (2003) Proteins, 50, 496–506.
Liu, Y., Zhao, D., Altman, R. and Jardetzky, O. (1992)

J. Biomol. NMR, 2, 373–388.
Mierke, D.F., Huber, T. and Kessler, H. (1994) J. Comput.

Aided Mol. Des., 8, 29–40.
Nabuurs, S.B., Nederveen, A.J., Vranken, W., Doreleijers, J.F.,

Bonvin, A.M., Vuister, G.W., Vriend, G. and Spronk, C.A.
(2004) Proteins, 55, 483–486.

Nabuurs, S.B., Spronk, C.A., Krieger, E., Maassen, H., Vriend,
G. and Vuister, G.W. (2003) J. Am. Chem. Soc., 125, 12026–
12034.

Nederveen, A.J., Doreleijers, J.F., Vranken, W., Miller, Z.,
Spronk, C.A., Nabuurs, S.B., Guntert, P., Livny, M.,
Markley, J.L., Nilges, M., Ulrich, E.L., Kaptein, R. and
Bonvin, A.M. (2005) Proteins, 59, 662–672.

Oshiro, C.M., Thomason, J. and Kuntz, I.D. (1991) Biopoly-
mers, 31, 1049–1064.

133



Snyder, D.A., Bhattacharya, A., Huang, Y.J. and Montelione,
G.T. (2005) Proteins, 59, 655–661.

Spronk, C.A., Linge, J.P., Hilbers, C.W. and Vuister, G.W.
(2002) J. Biomol. NMR, 22, 281–289.

Spronk, C.A., Nabuurs, S.B., Bonvin, A.M., Krieger, E.,
Vuister, G.W. and Vriend, G. (2003) J. Biomol. NMR, 25,
225–234.

Spronk, C.A., Nabuurs, S.B., Krieger, E., Vriend, G. and
Vuister, G.W. (2004) Prog. Nucl. Magn. Reson. Spectrosc,
45, 315–337.

Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. and
Clore, G.M. (1997a) Nat. Struct. Biol., 4, 443–449.

Tjandra, N., Marquardt, J. and Clore, G.M. (2000) J. Magn.
Reson., 142, 393–396.

Tjandra, N., Omichinski, J.G., Gronenborn, A.M., Clore,
G.M. and Bax, A. (1997b) Nat. Struct. Biol., 4, 732–738.

Vijay-Kumar, S., Bugg, C.E. and Cook, W.J. (1987) J. Mol.
Biol., 194, 531–544.

Vriend, G. (1990) J. Mol. Graph, 852–56.
Walma, T., Aelen, J., Nabuurs, S.B., Oostendorp, M., van den

Berk, L., Hendriks, W. and Vuister, G.W. (2004) Structure
(Camb), 12, 11–20.

Zhao, D. and Jardetzky, O. (1994) J. Mol. Biol., 239, 601–
607.

134


